Photocatalytic Synthesis of Hydrocarbons from CO₂/H₂O over Pd and Cu-Based Catalysts

Steven S.C. Chuang
Pisanu Toochinda and Dustin J. Donnelly
The University of Akron
Department of Chemical Engineering
Akron, OH 44325-3906

Introduction

Solar Energy — Solar Photovoltaic Electricity

Pathways of Electron/Hole Pairs and A and D Adsorbates

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$
 Oxidation potential = -0.812 V
 $CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$ Reduction potential = -0.244 V

- (I) SURFACE RECOMBINATION
- (II) RECOMBINATION IN THE BULK
- (III) DONATION OF ELECTRON TO ELECTRON ACCEPTOR SPECIES ON SURFACE
- (IV) DONATION OF HOLE TO ELECTRON DONOR SPECIES ON SURFACE

Modification of Photocatalysts

Support – Surface area

Semiconductor – Band gap energy, Stability and Mobility of e⁻/hole

Metal – Active sites

Objectives

- Screen catalysts by characterizing their activity and selectivity as well as stability for the CO₂/H₂O reaction under ambient conditions as a function of wavelength and intensity.
- Develop an in situ infrared (IR) technique to identify active adsorbates and elucidate reaction mechanism.
- Design new catalyst tailored to be stable, active, and selective in the visible light region.

Catalyst Preparation

- Cu/TiO₂, Rh/TiO₂, Pd/SiC, Cu/SiC prepared by incipient wetness impregnation of support by metal-salt solution.
- Pd/TiO₂ sol gel prepared by adding $Ti(OC_4H_9)_4$ to a solution of n-butanol and acetic acid, followed by 8 hours of stirring, upon which PdCl₂ is added.
- All catalysts are subsequently calcined in flowing air at 773 K.

Metal impregnated on support

Experimental (slurry)

500 mg of Cu/TiO_2 sol gel, 10 ml of water

P = 0.1 MPa

T = 298 K

Pyrex glass cuts off the light < 260 nm

Methane Formation

Methane Formation Rate from Photocatalytic Reaction in Slurry Phase Reactor

Catalyst	Initial rate of CH_4 formation $(\mu mol/cm^3/hr/g_{cat})$	Average rate of CH_4 formation $(\mu mol/cm^3/hr/g_{cat})$
SiC	0.002	0.002
TiO ₂	0.004	0.004
0.5 wt% Pd/SiC	0.013	0.010
2.0 wt% Pd/TiO ₂ solgel	0.010	0.044
0.5 wt% Cu/SiC	0.011	0.008
0.5 wt% Cu/TiO ₂	0.017	0.011
0.5 wt% Cu/SrTiO ₃	0.006	0.006
0.5 wt% Rh/TiO ₂	0.029	0.015

Quantum Efficiency

$$CO_2 + 2H_2O \xrightarrow{h\nu} CH_4 + 2O_2$$

$$C^{4+} \longrightarrow C^{4-}$$

$$\phi_{Q}$$
 (%) = $\frac{8 \text{ x moles of methane yield}}{\text{moles of UV photon absorbed by catalyst}} \times 100$

UV-Visible Spectroscopy

Semiconductors

Pyrex glass cuts off the light < 260 nm

UV-Vis in CO₂/H₂O Environment

T = 303 K

CO₂ and H₂O vapor from the saturator

Quantum Efficiency (cont.)

Catalyst	Quantum Efficiency (Φ _Q)
SiC	0.55
TiO ₂	1.13
0.5 wt% Pd/SiC	3.96
2.0 wt% Pd/TiO ₂ solgel	15.93
0.5 wt% Cu/SiC	3.11
0.5 wt% Cu/TiO ₂	4.80
0.5 wt% Cu/SrTiO ₃	1.94
0.5 wt% Rh/TiO ₂	8.19

Experimental (in situ IR)

Modular assembly which includes aperture, optical filters, IR filter, beamsplitter, and photomultiplier tube (PMT) detector.

In situ IR Spectrum of Photocatalytic Reaction over Cu/TiO₂ with CO₂ and Water

$$CO_2 + H_2O \xrightarrow{Cu/TiO_2} HC + O_2$$

125 mg of Cu/TiO₂

P = 0.15 MPa, T = 303 K

In situ IR Spectrum of Photocatalytic Reaction over Rh/TiO₂ with CO₂ and Water

$$CO_2 + H_2O \xrightarrow{Rh/TiO_2} HC + O_2$$

125 mg of Rh/TiO₂

P = 0.15 MPa, T = 303 K

Conclusion

- The quantum efficiency calculations show that Pd/TiO₂ solgel is the best catalyst for methane formation. Rh/TiO₂ also exhibits high activity for this reaction.
- In situ UV-Visible studies reveals that TiO₂-supported catalysts require the higher energy (i.e. shorter wavelength) to pass through the water-thin film deposited on the surface to activate the photocatalytic reaction.
- Preliminary in situ IR could successfully monitor the adsorbate species.

Future Plan

Acknowledgement

- U.S. Department of Energy
- Ohio Coal Development Office